Genetic and physical analysis of the nodD3 region of Rhizobium meliloti.
نویسندگان
چکیده
The nodulation (nod) genes of the symbiont Rhizobium meliloti are transcriptionally controlled by protein activators in the nodD gene family. While NodD1 and NodD2 act in concert with small molecular weight inducers provided by the host legume plant, NodD3 is an inducer-independent activator of the nod promoters. We determined the sequence of the nodD3 gene, confirmed the expression of a 35 kDa protein in vitro, and determined the insertion points of five Tn5 insertions in the region of the nodD3 gene. We found the NodD3 amino acid sequence to be markedly diverged from the sequences of NodD1 and NodD2, which were more similar to the inducer-dependent NodD of another species, Rhizobium leguminosarum biovar viciae. The expression of nodD3 is not well understood, but involves at least SyrM, another positive activator related to the LysR-NodD family. One of the phenotypically mutant Tn5 insertions used in genetic studies of NodD3-dependent nod regulation lacks NodD3 protein as determined by Western blots, but another expresses about 50-60% of the wild type level. The location of these Tn5 insertions substantially upstream of the open reading frame for NodD3 suggests importance of relatively distant regulatory sequences for nodD3 expression. An insertion that did not cause a NodD3- phenotype is located in the extreme C-terminus of the protein coding region.
منابع مشابه
Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance.
Exopolysaccharides (EPS) are produced by a wide assortment of bacteria including plant pathogens and rhizobial symbionts. Rhizobium meliloti mutants defective in EPS production fail to invade alfalfa nodules. Production of EPS in R. meliloti is likely controlled at several levels. We have characterized a new gene of this regulatory circuit. syrA was identified by its ability to confer mucoid co...
متن کاملThe Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3.
UNLABELLED In Sinorhizobium meliloti, three NodD transcriptional regulators activate bacterial nodulation (nod) gene expression. NodD1 and NodD2 require plant compounds to activate nod genes. The NodD3 protein does not require exogenous compounds to activate nod gene expression; instead, another transcriptional regulator, SyrM, activates nodD3 expression. In addition, NodD3 can activate syrM ex...
متن کاملRegulation of syrM and nodD3 in Rhizobium meliloti.
The early steps of symbiotic nodule formation by Rhizobium on plants require coordinate expression of several nod gene operons, which is accomplished by the activating protein NodD. Three different NodD proteins are encoded by Sym plasmid genes in Rhizobium meliloti, the alfalfa symbiont. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to host plant inducers. The third, NodD3, is...
متن کاملRhizobium meliloti nodD genes mediate host-specific activation of nodABC.
To differentiate among the roles of the three nodD genes of Rhizobium meliloti 1021, we studied the activation of a nodC-lacZ fusion by each of the three nodD genes in response to root exudates from several R. meliloti host plants and in response to the flavone luteolin. We found (i) that the nodD1 and nodD2 products (NodD1 and NodD2) responded differently to root exudates from a variety of hos...
متن کاملSpecific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes.
Nodulation (nod) genes in Rhizobium meliloti are transcriptionally induced by flavonoid signal molecules, such as luteolin, produced by its symbiotic host plant, alfalfa. This induction depends on expression of nodD. Upstream of three inducible nod gene clusters, nodABC, nodFE, and nodH, is a highly conserved sequence referred to as a 'nod box.' The upstream sequences have no other obvious simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 19 4 شماره
صفحات -
تاریخ انتشار 1991